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Summary 

In a monoenergetic ionic thermocurrent (ITC) band, the area S~ of the part of the band to the 
left of the peak (for T< TM) and the area $2 to the right of the peak (for T> TM) have a ratio 
a=S~/S2 that is related to the quantity x=E/kTM, where E is the activation energy and TM is 
the temperature corresponding to the peak. In this paper the function a(x) is found and an ap- 
proximating expression is formed with the method of computer fitting. 

The mechanism involved in the reorientation of impurity-vacancy (I-V) 
dipoles in a crystalline lattice is ascertained through dielectric relaxation stud- 
ies. Among the various experimental techniques employed for this purpose, 
ionic thermocurrent  (ITC) measurement [ 1 ] is preferred over the others, par- 
ticularly because of its convenience, sensitivity and accuracy. ITC, also known 
as thermally stimulated depolarization current (TSDC) measurement [2 ] has 
contributed substantially to a better understanding of the role of the dipolar 
imperfections. 

For simple non-interacting dipoles involving a single relaxation mechanism, 
a single ITC peak is obtained. In ITC measurements the sample is polarized 
by applying an electric field (Ep) at some suitable polarization temperature 
( Tp ) for a long time compared to the relaxation time at Tp. 

With the electric field still on, the sample is rapidly cooled down to a fairly 
low temperature at which the electric field is switched off. At such a low tem- 
perature, the relaxation time is practically infinite and the polarized dipoles 
are "frozen-in" in the crystalline lattice. The sample is then heated at a linear 
rate b and the resulting ionic thermocurrent  is recorded with the help of an 
electrometer. 
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Under these conditions the time dependence of the polarization P (t) can be 
described with first-order monoenergetic equations: 

dP(t)_ P(t) (1) 
dt z 

where z is a temperature parameter, i.e. z= z(T) is the relaxation time for the 
I-V dipoles. We may represent the temperature variation of z by the Arrhen- 
ius-type equation 

z(T) = Zoexp (E/kT) (2) 

where Zo 1 is the characteristic frequency factor for a vacancy jump from one 
lattice site to another for orientation of the I-V dipole and is independent of 
temperature; E is the activation energy. 

Equation (1) is a differential equation, the isothermal solution of which is 

P(t) = P ( 0 )  exp(-t/z) (3) 

where P(0)  is the "frozen-in" polarization at t=0 .  
Assuming a linearly increasing temperature, starting from a low value To at 

which ITC begins to appear, at a rate b (i.e. T =  To+bt), the non-isothermal 
solution of eqn. (1) is 

t (ja,)  P(t)=P(To) exp - ~ (4) 
0 

Taking into account eqn. (2) 
T 

exp - ~ T '  dT' P(T)=P(To)exp[-~f ( )7 (5) 

The corresponding expression for the polarization at T =  TM, where the ionic 
thermocurrent attains its greatest value, is given by: 

TM 

 xp( 7 
The integral appearing in eqn. (6) cannot be solved without approximation. 

After replacing (E/kTM) by x, the integral can be expressed [3] as: 
TM TM 

~exp ( -~ )dT=f  e x p ( - ~ ) d T = - E / ~  dx 
To 0 

E k I ~ ( 1  2v 3v 4v 5 v "~-I 
_ I 

(7) 
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For a temperature TM we have: 

TM = (bETM/k)I/2 (8)  

where T M is the relaxation time at TM. By substituting the quantity x in eqn. 
(8) we have: 

e -x kbvo (9) 
1 k b~o e x or x2 - - -  

x 2 - E  E 

Combining eqns. (6), (7) and (9) we have: 

P ( T M ) = P ( T o ) e x p [  ( 1 - ~  3! 4! 5! _ + ~ _ ~ + ~ i _ . . . ) l  (10) 

It is known that  the polarization decay is proportional to the integral 
f ~ I  (T) dT, which is equivalent to the shaded area of the ITC band from tem- 
perature T to TT in Fig. 1. 

If we define 

TT TT 

S2=fI(T)dT, Stot=fI(T)dT 
TM To 

and  $1 = Stot-- 82 

then the ratio a = S~/$2 characterizes the asymmetry of an ITC band (Fig. 2 ). 
On the basis of the above, the ratio a must  be 

$1 P ( T o ) - P ( T M )  P(To) 1 
a=s2 - P(TM) --P(TM) 

and finally, taking into account eqn. (10) we conclude: 

To T TT T T 
Fig. 1. The shaded area in the ITC band is proportional to the polarization decay P(T). 

Fig. 2. The ratio of the shaded areas $1 and $2 is used to describe the asymmetry of the ITC band. 
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Fig. 3. The ratio a=S1/S2 as a function of the quantity x=E/kTM. 
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Fig. 4. Plot of computer fitting using the least-squares method applied to values of In a versus 1/ 
X. 

( 2! 3! 
a = e x p  1--x+x~--x~ x--'"]-- 

=exp{~(--1)n(n+l)'/-n} - 1 ~ = o  (11) 

U s i n g  eqn.  ( 11 ) t h e  v a l u e  o f  a w a s  c a l c u l a t e d  for v a r i o u s  v a l u e s  o f  t h e  q u a n -  



TABLE 1 

Values of the ratio a given through eqns. (11 ) and ( 13 ) for various values of x 
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x a a 
eqn. ( l l F  eqn. (13) 

20 1.491 1.490 
25 1.530 1.531 
30 1.558 1.560 
35 1.579 1.581 
40 1.595 1.596 
45 1.607 1.608 
50 1.618 1.618 
55 1.626 1.626 
60 1.633 1.633 
65 1.639 1.639 
70 1.644 1.644 

aTerms up to 6th order were used. 

t i ty x (20 ~< x ~< 70) (because it is between these limits that  the values of x may 
fluctuate).  According to the diagram a=f(x) (Fig. 3) a small but  obvious de- 
pendence of a on the quanti ty x was observed. For values of x between 20 and 
70 the ratio a takes on values between 1.49 and 1.65 respectively. 

On the other hand, in the diagram In a = [( 1/x ), it is observed that  the graph 
approximates a straight line with a correlation factor R--  1 (Fig. 4). More pre- 
cisely, with the least-squares method it was found that  

In a=O.536-2.75/x (12) 

Thus, eqn. (11 ) may take the following approximate, simple expression: 

a = 1.71 exp ( - 2.75/x) (13) 

It should be noted that  the factor 1.71 in eqn. (13) approximates the value 
e - 1  (1.718) because for very large values of x, if we ignore the terms of first 
order and greater in eqn. (11) we shall get a ~ e -  1. 

Finally, in Table 1 the values of a calculated by eqns. (11) and (13) are 
compared for various values of x. 
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