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Abstract

A method from the ®eld of chaotic dynamics is applied for the estimation of fractal dimension of images. The

method is compared with other well-known algorithms on a set of computer generated images of known fractal di-

mension. The results con®rm the superiority of the method in terms of accuracy, dynamic range and computational

time. Ó 1999 Published by Elsevier Science B.V. All rights reserved.

Keywords: Fractal dimension; Box-counting method; Correlation algorithm; kth nearest neighbour method

1. Introduction

Fractal geometry has received much attention
as a useful tool for image analysis. The intensity
surface of an image can be considered as a fractal
object whose properties are quanti®ed numerically
by the use of the fractal dimension. For an image,
the fractal dimension is a non-integer number be-
tween 2 and 3 and it is a measure of the roughness
of its intensity surface. Experiments have demon-
strated that the fractal dimension is highly corre-
lated with the human perception of image texture;
the rougher the texture appears the larger is the
fractal dimension.

Several methods have been proposed for the
estimation of the fractal dimension of images. The
most widely used method is box-counting, which is

based on the covering of the intensity surface with
cubes of ®xed size. The fractal dimension is ob-
tained by the scaling of the number of non-empty
cubes with the size of the cubes. However, this
method underestimates the true fractal dimension
for relatively high values (e.g. above 2.6), mainly
due to the discretisation of the image domain and
the quantisation of the grey levels. Keller et al.
(1989) proposed a modi®cation of the box-count-
ing method based on linear interpolation slightly
improving its performance. However, this modi-
®ed method still underestimates the true fractal
dimension for very high values (e.g. above 2.8),
while it increases the computational time. The
correlation algorithm (Theiler, 1990) provides a
very elegant formulation for estimating fractal
dimension. According to this algorithm the di-
mension is obtained by the scaling of the mass of
spheres (or boxes) with the size of the spheres.

In this paper, an alternative method, from the
®eld of chaotic dynamics, is proposed for the
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estimation of the fractal dimension of an image.
The method is called the kth nearest neighbour
method and it has been previously applied for the
estimation of the fractal dimension of strange at-
tractors, resulting in very accurate estimates
(Termonia and Alexandrowicz, 1983). Addition-
ally, the method is relatively simple, fast and has a
very wide dynamic range regarding the number of
points at the log±log plot used for the estimation
of the fractal dimension.

In Section 2, the box-counting algorithm, its
modi®cations and the correlation algorithm are
described. The proposed method is introduced and
implemented in Section 3. The proposed method is
then compared with the other methods on com-
puter generated images of known fractal dimen-
sion in Section 4. In Section 5, the choice of the
parameters of the new method and its time com-
plexity are discussed.

2. Fractal dimension and methods for estimation

There are several fractal dimensions such as the
Hausdor� dimension (DH), the Minkowski±Bouli-
gand dimension (DM), the box-counting dimension
(DB), the entropy dimension (DE), etc. (for details,
see (Maragos and Sun, 1993)). These dimensions
are more or less capable of quantifying the degree
of fragmentation of curves and surfaces. The above
dimensions satisfy the following relation:

DH6DM � DB � DE:

The box-counting dimension is used widely,
mainly due to the relative case with which it is
estimated.

The fractal (box-counting) dimension, FD, of
an image is obtained by the scaling:

N�r� � crÿFD for r! 0; �1�
where N(r) denotes the number of cubes of size r,
needed to cover the intensity surface of the image
and c is a constant. In practice, only discrete data
are available and therefore the limit r! 0 cannot
be reached. In order to overcome this di�culty, the
fractal dimension is obtained by the slope of the
best ®tting line at the points �ÿ log r; log N�r��,
for various values of r.

Several approaches have been proposed for the
calculation of N(r). Voss (1988) proposed an ele-
gant way to carry out this calculation. Speci®cally,
N(r) can be obtained by

N�r� �
XM

m�1

mP�m; r�; �2�

where M is the number of pixels of the image and
P�m; r� denotes the probability that there are m
points within a cube of size r, centred about an
arbitrary point of the image. The probability
P�m; r�, can be estimated by the following rela-
tion:

P�m; r� � n�m; r�
Nref

;

where Nref is the number of randomly chosen ref-
erence points from the image and n�m; r� denotes
the number of cubes of size r, centred around each
reference point, containing m points of the image.

Sarkar and Chaudhuri (1994) proposed a dif-
ferent way for calculating N(r). Speci®cally, their
approach considers an image of size M �M . The
domain of image is partitioned into grids of size
r � r. On each grid there is a column of boxes of
size r � r � h, where h is the height of a single box.
If the total number of grey levels is G then
�G=h� � �M=r�. The boxes are numbered sequen-
tially 1; 2; . . . Let the minimum and maximum grey
level of image in �i; j�th grid fall in box number p
and q, respectively. Then nr�i; j� � qÿ p � 1 is the
contribution of the �i; j�th grid in N(r). Taking
contributions from all grids, we have

N�r� �
X

i;j

nr�i; j�:

Because of the di�erential nature of computing
nr�i; j� the method is called the di�erential box-
counting (DBC) approach. The authors claimed
that calculating N(r) in this manner gives a better
approximation to the boxes intersecting the image
intensity surface, especially when there are sharp
grey level variations in neighbouring pixels.

A modi®cation of the DBC, called the relative
di�erential box-counting (RDBC) method, was
proposed by Jin et al. (1995). According to this
method, N(r) is obtained by the following equa-
tion:
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N�r� �
X

i;j

ceil�kdr�i; j�=r�;

where dr�i; j� denotes the di�erence between the
maximum and the minimum grey level of the im-
age in the grid �i; j�; k � M=G and ceil(x) stands
for the ceiling of x (the smallest integer P x).

A very popular way to compute dimension is to
use the correlation algorithm, which estimates di-
mension based on the statistics of pairwise dis-
tances. According to this algorithm the
(correlation) dimension is de®ned as (Theiler,
1990)

m � lim
r!0

log C�r�
log r

;

where C(r) is the correlation integral given by

C�r� � # of distances less than r
# of distances altogether

:

The correlation algorithm provides a particularly
elegant formulation and simultaneously has the
substantial advantage that the function C(r) is
approximated even for r as small as the minimum
interpoint distance. For an image with N pixels,
C�N ; r� has a dynamic range of O(N2). Logarith-
mically speaking, this range is twice that available
in the box-counting method.

3. The kth nearest neighbour method

Theiler (1990) argued that the box-counting
method belongs to a class of algorithms based on
®xed size (all the cubes have the same size, r) and
as such is not well suited for the estimation of the
fractal dimension. Instead, the so called ®xed-mass
methods can provide a better estimation. Accord-
ing to these methods, the scaling of the sizes of
cubes so that they contain the same number of
points (mass), is considered. The main represen-
tative of this class of algorithms is the kth nearest
neighbour method. An early implementation of
the method, in the context of chaotic dynamics,
was developed by Termonia and Alexandrowicz
(1983). They suggested the following scaling of the
average distance, hrki, of a point to its kth nearest
neighbour as a function of k:

hrki � k1=FD: �3�
Grassberger (1985) corrected Eq. (3) as follows:

hrc
ki � G�k; c�kc=D�c�; �4�

where c � �1ÿ q�Dq; D�c� � Dq and G�k; c� is a
function of k and c, which is near unity for large k.
Dq is the multifractal dimension (Theiler, 1990)
of order q and for q � 0, the fractal dimension
is obtained, that is FD�D0. Also for q� 0 it fol-
lows that c � D�c� � FD which means that the
fractal dimension is the ®xed point of the function
D�c�.

In Fig. 1, the plot of loghrc
ki versus log k, with

c � 2:5 and G�k; c� � 1, is shown for a fractal
image of size 256� 256 with 256 grey levels, gen-
erated by the Random Midpoint Displacement
(RMD) method (Saupe, 1988, p. 100). The plot
clearly con®rms the scaling given by Eq. (4).

In our implementation, the fractal dimension of
an image is estimated iteratively, using Eq. (4), for
k � kmin; . . . ; kmax (k integer), as follows:

Step 1. Nref reference points from the image,
fXmg �m � 1; 2; . . . ;Nref�, are chosen randomly.

Step 2. An initial value of c; c0, is chosen arbi-
trarily and G�k; c0� is set to unity for every k. Since
the fractal dimension of an image is between 2 and
3, it would be better to choose c0 in this range, e.g.
c0� 2.5. However, as will be shown in Section 5,
the performance of the method is not a�ected
signi®cantly by the initial value of c.

Fig. 1. Plot of y � loghrc
ki versus x � log k for an image, with

c � 2:5.
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Step 3. Let s0 �
�����������������
1� kmax

p� � �dae denotes the
smallest integer P a). Then for each reference
point Xm, the number of points, N�m; s�, within the
cube of size s � s0, centred around Xm, is com-

puted. The size s is increased by one and N�m; s� is
updated, until N�m; s�P kmax. Then the distances,
from Xm, of the points lying within the cube of size
s, are sorted in ascending order. From the sorted

Fig. 2. Estimated fractal dimension obtained by the application of the ®ve methods versus true fractal dimension for images generated

(a) by the RMD method and (b) the Fourier Filtering method. Ideal behaviour is indicated by the diagonal, dashed line.
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distances, those corresponding to the kmin up to
kmax nearest neighbours are recorded as
rkm �m � 1; 2; . . . ;Nref�.

Step 4. For n � 1; 2; . . . ; the following recursive
relations are applied:

cn � D�cnÿ1�=anÿ1; �5�

G�k; cn� � hrcnÿ1

k i=kcnÿ1=D�cnÿ1�; �6�
where

hrc
ki �

1

Nref

XNref

m�1

rc
km

and anÿ1 is the slope of the best ®tting line at the
points � logk; loghrcnÿ1

k i�.

Practically, 1000 reference points and two or
three iterations (Step 4) are su�cient for a fast and
accurate estimation of the fractal dimension. More
details of the way that these parameters a�ect the
performance of the algorithm can be found in
Section 5.

4. Experimental results

The method is tested on images with known
fractal dimension generated by the RMD method
(set I) and the Fourier Filtering method (Saupe,
1988, p. 108) (set II). For each set of images and
for each value of FD � 2:0; 2:1; 2:2; . . . ; 3:0, a se-
ries of 50 images of size 256� 256 with 256 grey
levels are generated. The number of reference
points and iterations are set equal to 1000 and 2,
respectively, and the initial value of c is chosen
equal to 2.5. The range of the values of k, over
which the slope of the best ®tting line is computed,
is [50, 250]. The results from the application of the
method are compared with those obtained by the
box-counting algorithm due to Voss the DBC
approach, the RDBC method and the correlation
algorithm. For the box-counting algorithm, the
number of reference points is set equal to 1500 and
the fractal dimension is estimated by the slope of
the best ®tting line at the points (ÿlog r, log N(r))
for r � 9; 11; 13; . . . ; 41. For the DBC approach,
the fractal dimension is obtained using boxes of
size r � 5; 6; . . . ; 20 and for the RDBC method for

r � 7; 8; . . . ; 16. Finally for the correlation algo-
rithm, the distances between 5 and 25 are used.

The results obtained by the application of the
®ve methods are shown in Fig. 2, where the ideal
behaviour (estimated FD� true FD) is illustrated
by the diagonal, dashed line. The results indicate
that for the two sets of images, the proposed
method performs signi®cantly better than the
other methods for the full range of variation of
fractal dimension. In particular, the proposed
method does not underestimate the true value for
high fractal dimensions, giving more accurate es-
timates for the whole range of the fractal dimen-
sion.

For the evaluation of the results, the deviation
(D) of the estimated (EFD) from the true (TFD)
fractal dimension for the two set of images is
computed for all the n � 11 values of FD by

D �
���������������������������������������������Pn

i�1�EFDi ÿ TFDi�2
q

n
:

The results, shown in Table 1, highlight the supe-
riority in terms of accuracy of the proposed
method against the other methods.

5. Discussion

Three parameters a�ect the performance of the
kth nearest neighbour algorithm. These are: (1) the
number of reference points Nref , (2) the number of
iterations and (3) the initial value of c; c0.

In Fig. 3, the dependence of the estimated frac-
tal dimension upon the number of reference points,
Nref , is illustrated, for the previously generated
images by the RMD method for FD � 2:0; 2:5

Table 1

Deviation (D) of the estimated FD from the true value for the

two sets of images

Method D

Set I Set II

Box-counting 0.0313 0.0368

kth nearest neighbour 0.0106 0.0162

DBC 0.0645 0.0789

RDBC 0.0728 0.0823

Correlation 0.0306 0.0409
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and 3.0. The number of iterations is set equal to 2
and the initial value of c is 2.5. As can be noticed the
estimated fractal dimension is almost stable when
the number of reference points is greater or equal to
1000. This is the reason for choosing the number of
reference points to be equal to 1000 at the experi-
mental results in Section 4.

In Fig. 4, the estimated fractal dimension is
plotted versus the number of iterations, for the
same set of images. The number of reference
points is kept ®xed and equal to 1000 and c0 is
chosen equal to 2.5. The results in Fig. 4 indicate
that two iterations su�ce in order to obtain an
accurate estimation of the true fractal dimension
of an image.

Finally, in Fig. 5 the diagram of the estimated
fractal dimension versus the initial value of c is
shown. The number of reference points and iter-
ations are set equal to 1000 and 2, respectively
(solid line). As can be observed, for c0 > 3 the
estimation of the fractal dimension is a�ected
signi®cantly by the initial value of c, especially for
FD � 3:0. However, when the number of itera-
tions is increased to six (dashed line) the estimated
fractal dimension is no longer a�ected by varia-
tions of c0.

Consequently, accurate estimates of the fractal
dimension can be obtained when the number of
reference points is, at least, equal to 1000, with two
iterations and for an initial value of c between 2
and 3.

Fig. 4. Estimated fractal dimension versus the number of iter-

ations for (a) FD� 2.0, (b) 2.5 and (c) 3.0, for 1000 reference

points and with c0 � 2:5.Fig. 3. Estimated fractal dimension versus the number of ref-

erence points for (a) FD� 2.0, (b) 2.5 and (c) 3.0, for two it-

erations with c0 � 2:5.
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A major advantage of the kth nearest neighbour
method is its very wide dynamic range regarding
the number of points � logk; loghrcnÿ1

k i� that can be

used for the estimation of the fractal dimension.
Speci®cally, for an image of size N ´ N, the dy-
namic range of the available points is O(N2), since
for each point there are N2ÿ1 neighbours. On the
other hand, for the box-counting method, the
maximum size of cubes that can be used is re-
stricted by the size of the image, which means that,
for an N ´ N image, the dynamic range is O(N).

Another advantage of the proposed method
against box-counting is the signi®cantly less time
required for the estimation of the fractal dimen-
sion. This superiority is highlighted by the results
in Table 2, where the mean value of the processor
time (a 200 MHz Pentium PC with 32 MB RAM)
required for the estimation of the fractal dimen-
sion of images (generated by the RMD method) of
di�erent sizes and dimensions is listed. Speci®cally,
for the proposed method and for a given number
of reference points and iterations, the required
time is reduced signi®cantly as the size of the im-
age increases. This is due to the reduction of the
execution time of Step 3, as a result of the in-
creased resolution of the images. Furthermore, the
required time is reduced as the fractal dimension
gets closer to 2.0 because of the reduced irregu-
larity of the image's intensity surface. This fact
implies that the number of iterations in Step 3, for
®nding the nearest neighbours of the reference
points, is much smaller. On the other hand, for the
box-counting algorithm, which performed the best
after the kth nearest neighbour method, the re-
quired time depends only upon the number of
reference points and not upon the size or the
fractal dimension of the image.

Table 2

Mean value of the processor time required for the estimation of the FD of images with size 128� 128, 256� 256 and 512� 512

(generated by the RMD method), by the application of the kth nearest neighbour and box-counting algorithms

True FD Tmean (s)

128� 128 256� 256 512� 512

kth nearest Box-counting kth nearest Box-counting kth nearest Box-counting

2.0 4.1 13.8 2.7 13.8 1.9 13.7

2.2 4.9 13.9 2.9 13.9 2.1 13.8

2.4 6.0 13.8 4.1 13.8 2.8 13.7

2.6 7.2 13.8 5.4 13.8 3.9 13.8

2.8 8.0 13.7 6.8 13.8 5.7 13.8

3.0 9.5 13.8 8.1 13.8 6.8 13.9

Fig. 5. Estimated fractal dimension versus the initial value of c
for (a) FD� 2.0, (b) 2.5 and (c) 3.0, for 1000 reference points

and after two iterations (solid line) and six iterations (dashed

line).
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6. Conclusion

In this paper, a method from the ®eld of chaotic
dynamics, the kth nearest neighbour, was applied
for the estimation of the fractal dimension of grey
level images. The method was compared with
other well-known estimators of the fractal di-
mension of images. The methods were tested on
computer generated images with known fractal
dimension, using two di�erent generation methods
(Random Midpoint Displacement and the Fourier
Filtering methods). The proposed method was
proven superior of the rest algorithms, in terms of
accuracy, dynamic range and computational time,
for the whole range of fractal dimensions.
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