OSMOTIC DEHYDRATION OF FRUITS

A thesis submitted in part fulfilment of the examination requirements for the award of

MASTER OF SCIENCE IN IN FOOD TECHNOLOGY

Submitted by: Nicholaos P. Faradouris

Supervised by: Dr. Evangelos S. Lazos

UNIVERSITY OF HUMBERSIDE 1994

OSMOTIC DEHYDRATION OF FRUITS

4 poila

A thesis submitted in part fulfilment of the examination requirements for the award of

MASTER OF SCIENCE IN FOOD TECHNOLOGY

Submitted by: Nicholaos P. Faradouris

Supervised by: Dr. Evangelos S. Lazos

UNIVERSITY OF HUMBERSIDE 1994

ACKNOWLEDGEMENTS

The author gratefully acknowledges everyone who was involved in the fulfilment of this particular Master of Science course, from the University of Humberside and Technological Educational Institution of Athens. Special thanks are extended to Dr. Evangelos S. Lazos for his helpful advice and discussion.

ABSTRACT

The osmotic dehydration as a method of intermediate - moisture fruits production, was studied.

The influence of the temperature, dipping time, fruit skin, calcium chloride addition and vacuum pressure on water loss and solute gain were investigated. The achievement of a prevailing dewatering effect with only marginal solute pick-up, proved to be related to an inverse relationship between the cross-flows of water and solute.

Vacuum osmotic dehydration led to a special behaviour of mass transfer due to an intensification of capillary flow function. Vacuum treatments enhanced the dehydration rate, having a significant influence on sugar uptake. Moreover, the addition of small quantities of CaCl2 to sucrose osmotic solution although managed to increase the driving force of the drying process, gave products with salty and unacceptable taste due to a high salt uptake.

A mathematical model was developed for osmotic water removal of whole and halved apricots in a 70 Brix syrup. The model calculates the water losses as a function of the temperature and dipping time of osmotic dehydration; equation $WL_w = [0.796 + (680.3/T) - (3.934 \cdot 10^4/T^2)] t^{1/2}$ can be used for whole intact apricots, while equation $WL_h = [-3.217 + (1188/T) - (5.108 \cdot 10^4/T^2)] t^{1/2}$ for halved apricots. The predicted and experimentally measured water losses were found to be in close agreement.

CONTENTS

		Page
Chapter	one	
1.1.	Introduction	1
1.2.	Dehydration	2
1.3.	Osmotic Dehydration	3
1.4.	4. Mechanism of Osmotic Dehydration	
1.5.	Osmotic Dehydration Process	12
1.6.	Process Variables	14
	1.6.1. Type of food and variety	14
	1.6.2. Pretreatment	15
	1.6.3. Osmotic Agent	17
	1.6.4. Process temperature	
	and time of treatment	19
	1.6.5. Solution to sample ratio and agitation/	
	circulation of the osmotic agent	21
	1.6.6. Size and shape of the sample	22
1.7.	1.7. Treatments after Osmotic Dehydration	
1.8.	Osmotic Drying Modelling	26
Chapter t	WO	
2.1.	Materials and Methods	30
	2.1.1. Materials	30
	2.1.2. Methods	31
	2.1.3. Parameter Calculation Methods	32
2.2.	Results and Discussion	34
	2.2.1. Osmotic solution	34

	·		
2.2.2.	Effect of temperature		
	on Osmotic Dehydration	35	
2.2.3.	Mathematical Model for water loss		
	during Osmotic Dehydration	45	
2.2.4.	Influence of calcium chloride on the		
	Osmotic Dehydration of apricots	51	
2.2.5.	Influence of vacuum pressure on the		
	Osmotic Dehydration of apricots	56	
Conclusions		60	
Conclusions		62	
References		64	
Appendix	•	69	