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Abstract. An efficient spot-adaptive segmentation technique was developed by suitable combining in a cascade 
mode the benefits of image enhancement (Contrast Limited Adaptive Histogram Equalization technique 
(CLAHE)) and image segmentation (Seeded Region Growing technique (SRG)) in order to improve genes’ 
quantification in microarray images. Microarrays utilized for evaluation purposes comprised 7 publicly 
available images. Initially, an image griding algorithm was employed to divide the image into rectangular 
image-cells. Subsequently, CLAHE was applied on each individual image-cell, initial SRG-seed was set at the 
image-cell’s center, and SRG-threshold was estimated from the image-cell’s background. The spot’s boundary 
was referred to the corresponding cell spot in the original image and the spot’s intensity was evaluated. 
Extracted intensities were comparatively evaluated against a well-established commercial software package 
(MAGIC TOOL) employing the Jeffrey’s divergence-metric. The metric of the spot-adaptive segmentation 
technique was about double as compared to MAGIC TOOL’s metric, with differences ranging between 1.23 and 
5.21 in the processed images. Regarding processing time, the proposed method required half the time of MAGIC 
TOOL’s (211 secs against 487 secs) to process the same cDNA image on the same computer. 
 
 

1 INTRODUCTION 

Complementary DNA (cDNA) microarray technologies are hybridization based methods that enable the 
simultaneous assessment of the expression levels of thousands of genes [1-3]. In this way, microarrays provide an 
easy way to compare gene expression profiles between biological samples, by detecting either their expression 
or differential expression. 

Initially, the two messenger RNA (mRNA) samples to be compared are reverse transcripted into cDNA and 
printed on a glass microscope slide by a robotic arrayer, thus, forming circular spots of known diameter. 
Subsequently, samples are labeled with red and green fluorescent dye, respectively, are mixed and competitively 
hybridized to the microarray slide [4, 5]. The end product of the comparative hybridization experiment is scanned, 
using lasers that excite each dye on the appropriate wavelength. The relative fluorescence between each dye on 
each spot, representing a gene, is recorded using methods contingent upon the nature of the labeling reaction , 
i.e. confocal laser scanners and Charged Couple Devices [6]. 

The output of such systems is two 16-bit TIFF images, one for each fluorescent channel. From the 
fluorescence intensities of each channel, that are associated to each spot, the relative expression levels of the 
genes in both samples are estimated [7, 8]. Extraction of genes expression levels is accomplished via image 
analysis techniques namely griding, spot segmentation, and intensity extraction [9-12]. Griding is the process of 
identifying and locating the coordinates of each cell containing the spot; the cell is a rectangular region 
containing the pixels of both the spot and its background. Segmentation refers to the classification of cell-pixels 
as either signal (spot’s foreground) or surrounding area (spot’s background). Spots’ intensity extraction refers to 
the calculation of the fluorescence signal’s mean intensity for the spot’s foreground. Extracted mean intensities 
correspond to gene expression levels that, in turn, are translated into biological conclusions from molecular 
biologists, by employing data mining techniques. 

However, microarray experiments involve a number of error-prone steps (occurring during fabrication, target 
labeling, and hybridization), which induce noise on the resulting images [13, 14]. Microarray images are also 
corrupted by irregularities in the shape, size, and position of the spot [14, 15]. Unless these sources of error are 
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addressed, they will propagate throughout the stages of the analysis, leading to inaccurate biological inferences. 

Although a variety of image pre-processing techniques have been suggested for correcting these error 
sources on cDNA images [16], existing software tools, utilized for the analysis of microarray images, focus 
mainly on accurate spot localization and segmentation by various segmentation techniques [17-22]. Only few 
studies [23-27] have examined the impact of image pre-processing on cDNA image quality, however, without 
evaluating the effect of image enhancement on spot segmentation.   

In the present study, an efficient spot-adaptive segmentation technique was developed by suitable combining 
in a cascade mode the benefits of image enhancement (Contrast Limited Adaptive Histogram Equalization 
technique (CLAHE) [16]) and image segmentation (Seeded Region Growing technique (SRG) [28]). Initially, an 
image griding algorithm was employed to divide the image into rectangular image-cells. Subsequently, CLAHE 
was applied on each individual image-cell, initial SRG-seed was set at the image-cell’s center, and SRG-
threshold was estimated from the image-cell’s background. The spot’s boundary was referred to the 
corresponding cell spot in the original image and the spot’s intensity was evaluated. Extracted intensities were 
comparatively evaluated against a well-established commercial software package (MAGIC TOOL) employing 
the Jeffrey’s divergence-metric in a publicly available dataset of real cDNA images [29]. 

2 MATERIAL AND METHODS 

Material consisted of 7 microarray images downloaded from a publicly available database of the MicroArray 
Genome Imaging & Clustering Tool (MAGIC) website [29]. Each image contained 6400 spots investigating the 
diauxic shift of Saccharomyces cerevisiae. In the particular dataset, the authors [30] have used a common 
reference messenger RNA pool (green, Cy-3) to control for biological variability [31-33]. Such a design provides 
an adequate degree of replication, required for the quantitative assessment of image segmentation and 
subsequent gene quantification. 

2.1 Spot Adaptive Segmentation 

Prior to spot segmentation, a griding procedure was applied [34] for dividing the cDNA image into 
rectangular, spot-containing, cell-images. Following griding, individual cell-images, containing spots, were 
enhanced using the CLAHE method [35-37]. CLAHE is a special case of the histogram equalization  technique [16] 
that functions adaptively on the image to be enhanced. Application of CLAHE individually (in each cell-spot) 
maximizes the contrast throughout the cell-spots by adaptively enhancing the contrast of each cell-pixel relative 
to its local neighborhood. The procedure for enhancing individual cell-images by employing the CLAHE 
technique is described below: 

Step 1: Each cell-image was divided into a number of non-overlapping contextual regions of equal sizes, 
experimentally set to be 2x2, which corresponds to approximately 40 pixels. 

Step 2: The histogram of each contextual region was calculated. 
Step 3: A clip limit, for clipping histograms, was set (t=0.001). The clip limit was a threshold parameter by 

which the contrast of the cell-image could be effectively altered; a higher clip limit increased cell-spot contrast. 
Step 4: Each histogram was redistributed in such a way that its height did not exceed the clip limit. 
Step 5: All histograms were modified by the transformation function 
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is the probability density function of the input image grayscale value j, n is the total number of pixels in the 
input image and nj is the input pixel number of grayscale value j.  

Step 6: The neighboring tiles were combined using bilinear interpolation and the cell-image grayscale values 
were altered according to the modified histograms. 

Following individual cell-image enhancement, the corresponding cell-spot was segmented from its 
background employing the SRG algorithm. SRG segmented the cell-image into pixel regions with respect to a 
pre-defined seed, set here to be the centre of the rectangular cell-image. Following an iterative procedure, SRG 
grew pixel regions, by assigning the most homogeneous neighboring pixels, employing a homogeneity criterion: 
the chosen pixel’s intensity should be 1/higher than an estimated noise threshold, which was calculated by the 
standard deviation of the image-cell’s background (using 2-pixels rectangular frame within the cell-image’s 
edges) and 2/ close to the mean intensity of the so far seeded region. This growing procedure was repeated until 
all pixels in the cell-image were assigned to either the spot or its background. The spot’s boundary, thus 
determined, was referred to the corresponding cell spot on the original image and the spot’s intensity was 
evaluated. This was necessary, since intensities in the processed cell-spots were altered by the enhancement 
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process. 

2.2 Metric for segmentation efficiency 

Following segmentation, foreground (spot) and background intensity values for the common reference 
channel (green, Cy-3) were extracted and, considering all segmented spots, two density distributions were 
produced, employing a non-parametric kernel density estimation method. The distance between those two 
distributions was determined employing the Jeffrey's (J) measure of divergence, shown in (3): 
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where pS,i and pB,i are the density distributions of the extracted intensities of all image spots and backgrounds 
respectively [38].  

Higher values of J correspond to more distant distributions and, consequently, to more accurate 
segmentation, considering that intensities are evaluated on the original image alone. Extracted intensities 
employing the CLAHE-SRG segmentation were comparatively evaluated, in terms of J divergence, against the 
intensities obtained by recently published commercial software (MAGIC TOOL[39]). For evaluation purposes, 
the same microarray images were introduced to both methods and the SRG segmentation option of the MAGIC 
TOOL was chosen. 

3 RESULTS 

Figure 1 shows the result of the CLAHE-SRG segmentation. Table 1 presents the results of the Jeffrey’s 
divergence between spot and background intensity distributions (of the common reference channel) for the 
proposed methodology and the MAGIC TOOL respectively. 

 

  

Fig. 1. Original and CLAHE-SRG segmented microarray spots. 

 
Images CLAHE-SRG MAGIC TOOL 
1302_OD370 8.24 2.71 
1303_OD014 6.93 1.33 
1309_OD690 8.20 3.76 
1310_OD046 4.99 2.19 
1311_OD080 2.45 1.99 
1312_OD180 4.08 2.43 
1313_OD370 3.03 2.44 

Table 1 : Jeffrey's divergence metric values (in bits) between spot (signal) and background intensity values 
for the green (common reference sample) channel, for seven cDNA images. 

Figure 2 depicts three randomly selected cell images, the middle row shows the result of the SRG algorithm 
according to the MAGIC TOOL software, and the bottom row presents the segmentation results based on the 
CLAHE-SRG segmentation. 
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Fig. 2. a/Original cell-images, b/MAGIC TOOL segmentation using SRG, and c/CLAHE-SRG segmentation. 

4 DISCUSSION 

Microarray technologies have transformed the field of genomic research by allowing the simultaneous 
profiling of thousands of genes. The microarray process is based entirely on the extraction of quantitative 
information from images.  

In the present study, an efficient spot-adaptive segmentation technique was developed by suitable combining 
in a cascade mode the benefits of image enhancement (Contrast Limited Adaptive Histogram Equalization 
technique (CLAHE)) and image segmentation (Seeded Region Growing technique (SRG)) in order to improve 
the accuracy of microarrays’ spot segmentation and consequently genes’ quantification. The proposed CLAHE-
SRG segmentation  comprised 1/a griding algorithm for locating individual cell-images, 2/an enhancement 
technique (CLAHE) for enhancing individual cell-images and, thus, for facilitating accurate cell-spot detection, 
and 3/ a segmentation algorithm (SRG) for outlining individual cell-spots. 

By visual inspection of the original and the segmented images in Figure 1, it can be observed that the 
proposed technique improved the display of spots and emphasized the depiction of spot edges. The success of 
the proposed segmentation scheme is mostly due to its characteristic to perform individually on each spot and 
not on the whole image and accentuate spots’ edges without the requirement for image uniformity, which is 
prerequisite for most of the common histogram equalization techniques.  

The segmentation results of the proposed segmentation scheme were comparatively evaluated with the 
results obtained using commercial software (MAGIC TOOL) by employing the information theoretic metric of 
Jeffrey’s divergence (Table 1). Results, according to the proposed scheme, were obtained by superimposing 
spot-outlines on the original cell-spots. In this way, higher divergence achieved by a particular method between 
the actual spots and surrounding background, would eventual lead to better spot-boundary detection result. 
Table 1 confirms that the proposed scheme performed as anticipated, by increasing the divergence (J) between 
signal and background intensity distributions, as compared to corresponding distributions obtained using the 
MAGIC TOOL software.  

Regarding processing time, CLAHE-SRG took 211 seconds against MAGIC TOOL’s 487 secs for the same 
1024x1024, 16-bit cDNA image, containing 6400 microarray spots, and on the same computer.  
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