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Purpose: Microarray experiments are important 
tools for high throughput gene quantification. 
Nevertheless, such experiments are confounded by a 
number of technical factors, which operate at the 
fabrication, target labelling, and hybridization 
stages, and result in spatially inhomogeneous noise. 
Unless these sources of error are addressed, they will 
propagate throughout the stages of the analysis, 
leading to inaccurate biological inferences. The aim 
of this study was to investigate whether image 
restoration techniques may improve the accuracy of 
subsequent microarray image analysis steps (i.e. 
segmentation and gene quantification). 
Materials and Methods: A public dataset of seven 
microarrays obtained from the MicroArray Genome 
Imaging & Clustering Tool (MAGIC) database were 
used. Each image contained 6400 spots investigating 
the diauxic shift of Saccharomyces cerevisiae. 
Restoration was based on the Wiener deconvolution. 
Subsequently, restored images were processed with 
the MAGIC tool for semi-automatic griding and 
segmentation. The influence of the restoration 
process on the accuracy of spot segmentation was 
quantitatively assessed by the information theoretic 
metric of the Kullback-Liebler divergence.  
Results: Pre-processing based on Wiener 
deconvolution increased the range of divergence 
(0.04 – 3.01 bits) and consequently improved the 
accuracy of subsequent spot segmentation. 
Conclusion: Information theoretic metrics confirmed 
the importance of image restoration as a pre-
processing step that significantly improved the 
accuracy of subsequent segmentation, thus leading to 
more accurate gene quantification.  
 
Introduction 

 
Complementary DNA (cDNA) microarray imaging 

is considered as an important tool for large-scale gene 
sequence and gene expression analysis [1, 2]. Molecular 
biologists and bioinformaticians are using microarray 
technology not only for identifying a gene in a 
biological sequence but also for predicting the function 

of the identified gene within a larger system, such as the 
human organism [3].  

The basic microarray experimental procedure 
involves hybridization of complementary nucleic acid 
molecules, one of which (target) has been immobilized 
in a solid substrate (e.g. glass) using a robotically 
controlled device (arrayer). The two main techniques for 
printing targets are metallic pin and inkjet based 
systems, which lead to the formation of circular spots of 
known diameter and cDNA target. Those spots are 
located at the vertices of a rectangular lattice on the 
solid substrate surface. Each one of them serves as a 
highly specific and sensitive detector of the 
corresponding gene [4]. In order to create a genome 
expression profile of a biological system with 
microarrays, the messenger RNA from a particular 
sample is isolated, labelled and hybridized on the 
microarray. Although labelling and detection of 
hybridized probes is performed using various protocols 
i.e. P32, chromogenic systems (i.e. digoxigenin, 
antidigoxigenin etc [5], fluorescent dyes (e.g. Cy3, Cy5) 
can be characterized as the most popular. After labelling 
and hybridization the microarrays are “read”, using 
methods contingent upon the nature of the labelling 
reaction i.e. PhosphoImager plates, confocal laser 
scanners, and Charged Couple Devices [6].  

The data output of the microarray experiment are 
two 16-bit tagged image files, one for each fluorescent 
dye (Cy3, Cy5). By isolating the spots for each channel 
via image segmentation, and by analyzing the pixel 
intensities of each segmented spot, it is possible to 
accurately quantify gene expression. These three crucial 
steps, experiment, image processing and gene 
quantification characterize the microarray analysis 
pipeline.   

Gene quantification is, nevertheless, confounded by 
a number of technical factors, which operate at the 
fabrication, target labelling, and hybridization stages, 
and result, in the microarray output images, not only as 
spatially inhomogeneous noise but also as irregularities 
of spot shape, size, and position.[7, 8]. Additive 
degradation caused by the confocal laser scanner, used 
as “reading” method, is furthermore complicating gene 
quantification. Unless these sources of error and 



degradation are addressed, they will propagate 
throughout the stages of the analysis leading to 
inaccurate biological expression.  

In spite of the potential importance of image pre-
processing in correcting these error sources, existing 
software tools [9-12] focus mainly on spot localization 
and microarray image segmentation. Analysis of 
microarray images is thereby separated into three 
sequential steps, namely, griding, segmentation and 
intensity extraction [13-16]. Only few studies have 
examined the impact of image pre-processing upon the 
steps of spot detection and segmentation, which are 
crucial intermediaries in the microarray pipeline [13, 
17]. 

The aim of this study was to investigate whether 
image deconvolution techniques may improve the 
accuracy of subsequent microarray image analysis steps 
(i.e. segmentation and gene quantification). 
Consequently, this study explores the performance of 
Wiener deconvolution on a public available dataset [18]. 
In addition, to objectively quantify whether 
deconvolution improved segmentation, information 
theoretic measures were applied to the distributions of 
the signal and the background intensity values. 
 
Methods and Material 
 

The microarray images used for this study 
comprised a publicly available dataset of seven 16-bit 
Tiff images obtained from the MicroArray Genome 
Imaging & Clustering Tool (MAGIC) website [19]. 
Each image contained 6400 spots investigating the 
diauxic shift of Saccharomyces cerevisiae. The 
particular dataset was selected because the original 
authors [18] used a common reference messenger RNA 
pool to control for biological variability [20-22]. This 
particular design affords an adequate degree of 
replication required for the quantitative statistical 
assessment of the effects of pre-processing on the image 
segmentation and subsequent gene profiling [20]. 

Microarray images were restored by implementing 
the Wiener deconvolution algorithm [23] with Matlab 
source code [24]. The Wiener deconvolution algorithm 
requires prior knowledge, both, of the Point Spread 
Function (PSF) of the imaging apparatus and the 
inherent noise of the image. Since we did not have 
access to the confocal microscopy scanner used by the 
original authors [18], we modelled the PSF by a 
spatially invariant Gaussian PSF [25, 26] for two 
different choices of the Full Width Half Maximum 
(FWHM) parameter. Additionally, noise estimation was 
done by calculating the standard deviation of sampled 
regions in the background surrounding of the spots. The 
estimated noise value was employed in the Wiener 
deconvolution filter. Subsequently, restored images 
were processed with the MAGIC tool for semi-
automatic griding and segmentation.  

Griding and segmentation procedures were 
performed on both original and restored microarray 
images using two separate, well known algorithms in 

microarray spot segmentation namely Fixed Circle (FC) 
and Seeded Region Growing (SRG) [17, 27, 28]. The 
FC method is based in segmenting each spot by using 
constant diameter and is implemented in most of the 
common commercial software packages [29-31].The 
SRG segmentation method requires the specification of 
starting points, or seeds for the spots. Both are proved to 
be very effective in the accurate segmentation of 
microarray spots. Accurate segmentation provides a 
better estimation of the signal (spot) and background 
intensities, which will be further used for gene 
quantification.  

After segmentation, foreground (spot), and 
background intensity values for the common reference 
channel (green, Cy-3) were extracted for further 
processing. Histogram evaluation and visualization for 
the distribution of signal and background intensity 
values was then performed with Matlab. Furthermore, 
the influence of the deconvolution process to the 
accuracy of spot segmentation was quantitatively 
assessed by the information theoretic metric of the 
Kullback-Liebler divergence [32]. Images with high 
value of divergence, which corresponds to well 
separable distributions of signal and background, are 
more likely to give accurate segmentation results and, 
thus, are preferable. 
 
Results 
 

Results of the Wiener deconvolution procedure are 
shown in Fig.1. One may observe that the image 
restored using a FWHM of 0.3 pixels (Fig.1b) is 
virtually indistinguishable from the original (Fig.1a); 
setting the FWHM parameter to 0.5 pixels, results in a 
sharpened image with higher contrast (Fig.1c). 

Table 1 and Table 2 tabulate the values of the 
Kullback-Liebler divergence between spot and 
background log intensity distributions for the FC and 
the SRG segmentation procedures respectively.  

 

a. Original b. Restored 
FWHM=0.3 

c. Restored 
FWHM=0.5 

 
Fig.1. Original and Wiener restored sections of 
microarray images for two different choices of Gaussian 
PSF kernel 
 

In all arrays evaluated, pre-processing based on the 
Wiener deconvolution increased the range of the 
divergence metric both for the FC and SRG 
segmentation methods e.g. for the image coded as 



“1313_OD730” in the Magic database [19], the increase 
in the Kullback-Liebler value was 2.97 nits.  

Table 1,2. Kullback-Liebler divergence metric between 
spot (signal) and background intensity (log-space) 
values for the green (common reference sample) 
channel for the seven arrays used in the DeRisi 
publication. The results correspond to the FC and SRG 
segmentation methods. 

FC Segmentation Method 

Images Original Wiener 
0.3 

Wiener 
0.5 

1302_0D370 1.337 1.374 1.205 
1303_0D014 0.825 0.834 0.189 
1309_0D690 1.457 1.792 1.937 
1310_0D046 0.795 1.324 0.726 
1311_0D080 0.574 0.608 0.772 
1312_0D180 0.866 0.926 0.982 
1313_0D730 1.499 1.569 0.843 

SRG Segmentation Method 

Images Original Wiener 
0.3 

Wiener 
0.5 

1302_0D370 3.743 3.502 4.059 
1303_0D014 1.298 1.241 2.222 
1309_0D690 1.676 2.278 2.424 
1310_0D046 1.773 2.874 1.613 
1311_0D080 1.474 1.647 2.725 
1312_0D180 4.832 3.999 3.806 
1313_0D730 2.211 5.251 3.617 

 
Discussion-Conclusion  

 
Microarray technologies have transformed the field 

of genomic research by allowing the simultaneous 
profiling of thousands of genes. The microarray process 
is based entirely on the extraction of quantitative 
information from images. Despite the importance of 
image pre-processing steps in other fields that rely on 
quantification of image features (e.g. medical and 
astronomical imaging) there have been very few 
attempts to apply similar techniques to microarray data 
analysis. Previous work has focused mainly on 
microarray image de-noising by stationary wavelet 
transforms [33] and adaptive fuzzy filters [34]. Both 
methods were shown to be capable of removing noise 
while preserving structural information provided by the 
spot size, shape etc. The resulting images were judged 
to be of higher quality than the originals by either direct 
visual inspection or comparison with subjectively 
validated quality numerical indices [35].   

In the present work, the Wiener deconvolution 
filtering algorithm was applied to the problem of 
microarray image restoration aiming to improve either 
spot segmentation or gene profiling. To objectively 
quantify the beneficial impact (if any) of the 
deconvolution procedure, information theoretic metric 
of Kullback-Liebler divergence were evaluated after the 
segmentation procedure for both the original and the 
enhanced images. Results confirmed the importance of 

image restoration as a pre-processing step that 
significantly improved the accuracy of subsequent 
segmentation, thus leading to more accurate gene 
quantification. 
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